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4.11 Keppler’s Laws

Keppler First Law: “Every planet describes an ellipse with the sun at one of the foci”

Let us consider a particle of mass “u” in under inverse square law force.
Since the inverse square attractive force

__k _ .2 (if,=1

f(r) = T2 ku (If”l" = u) (4.11.1)
For gravitational force k = GmM,

dz_u _ Iif(u)

(ng tu)= T (4.10.2)
du o pku
dp? TU=T
du o pk
s TU= 3 (4.11.2)

We will now solve these equations Eq. (4.11.2) to understand the nature of

the orbit.
d?u _ uk __ d*u uk



4.11 Keppler’s Laws

Consider a function y = u — ‘l‘—f (4.11.4)

Differentiating above equation

dy _du
do  de

Differentiating above equation again

d?y _ d*u

62 — 1pz (4.11.5)
Now

ey _du

a0z VY T2 T z =0

d?y _

202 +y = (4.11.6)

d?u k
dO? 12

The general solution is;

u = BcosO + Csinf + Lll—f

Where B = Acosf, and C = Asiné,
u = Acos(6 —0,) + ‘:—f
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4.11 Keppler’s Laws

It is a second order differential equation where “y” is a function of “6”” And
y = Acos(8 —6,) (4.11.7)
where A and 6, are constants.

k
y=u—%=Acos(6—€o)

Uk
=77 T Acos(0 = 0,) (4.11.8)
1% _ 1 +Al2 6 -6,
u k) e coS

2 —
Using Equation Eq. (4.9.2) (%) oo = 208G

and using V = —% = —ku



4.11 Keppler’s Laws

(d_u)z 4y = 2(E+kuw)

do Lh?
Using Eq.|lu = Acos(60 — 6,) + % and Z—z = —Asin(0 — 6,)
2 2
(Z—:) + u? = [-Asin(8 — 6,)]? [ACOS(H 6,) + = zl—f(E + ku)

= A?[sin?(8 — 0,) + cos?(0 — 0,)] + (thk) Z%ACOS(H —-0,) = ”

= A% + (&) Zﬂk Acos(6 —0,) = 2—”(E + kAcos(60 — 6,) + e )

12

:>A2+(”—k) _|_2“_"ACOS(Q_90)_2“E+2“kAcos(9 0 )+2(“—2)
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4.11 Keppler’s Laws

k |2El?
= A =*t +1
12 ukz

lZ

uk

lZ
— 2
= _(“") =1+ —’;f (\/ZEIZ + 1) = cos(0 —6,)

2
And u( )=1+i—lkcos(9—90) (4.11.8)

T k? uk

(i)

2E1%
— = 1+(\/uk2 +1>cos(9—90)

|=>5= 1+ ecos(8 —6,) ‘ (4.11.9)
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=

Eqg. (4.11.9) is equation of conic which describe the motion of planet
around the sun.




4.10 Equation of motion for a body under central force

ginverse square law force2

For Eq.(4.10.11) & Eq.(4.10.12) if we assume 8, = 0 & 6 = 0°& 180°

17 14e

& (4.10.13) & (4.10.14)

r, = —
T

Fore > 1 of E > 0, ry IS negative

Ande =1, E =0, ryisinfinity

Both cases = motion is unbound

Thereforee < 1 and E < 0 Is necessary to keep a bounded motion.
The finite and positive values of r; and r, represents the turning points.
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Nature of the Orbit
The nature of orbit is determined by eccentricity e which depend on energy

Value of E Value of eccentricit Nature of orbit

e>1 Hyperbola
. E=0 | e=1 Parabola
0<e<1 Ellipse
e=0 Circle

2
we can always set 8, = 0 And % =q = ﬁ = % = C|1 + ecos(8 —6,)]
Bound motion is possible only for Ellipse or circle. __\hygﬂ_'bila____’j?j R
The motion of planets is either circular of elliptical. Parabola _ E =1 _

Ellipse Verr(min) < E <0

The variation of length of the day and seasonal
changes suggest that the path of the planet is elliptical. Circle  E = Verp(min)

"




4.11 Keppler’s Laws

¢ Since the planet repeat its motion after a fixed period.

¢ During this period the variation in the length of day and night can
only be explained if the orbit of the planet is elliptical.

“» We conclude that the planet around the sun describe elliptical orbit
with sun at one of its foci.

¢ Furthermore, the finite and positive values of r; and r, represents the
turning points for the planet or the minimum and maximum radii of
the planet during the motion which are called apogee and perigee for
the earth orbit.




Keppler Second Law: “The position vector of particle drawn from the origin
sweeps equal area in equal interval of times.”  OR

“The Areal velocity of the body under the central force is constant.” OR

“The rate of change of area covered by the radial vector drawn from the
centre to the planet under the central force is constant.”

The area of Triangle AAOA'in given figure is

A
A
v,

—_— 1 2 > z "._:t "."
dA — ET d@n (41112) ...1 ...Fdﬁ
A _ 1246 o ‘
dt 2 dt

Multiplying both sides with mass “u” of the body

dA _ 1 2d0 1

Mae =214 M 6
aa _ 1
Mt =2
4~ L1 = constant (4.11.13)
dt 2U




4.11 Keppler’s Laws

Kepler’s Third Law: “The square of the time period of revolution of the planet is

directly proportional to the cube of the semi-major axis of the orbit”

From the Kepler’s second law, we know that Areal velocity of the body under the

action of central force IS constant

: l
A = — = constant
2uU
dA l dA l
=—= [—dt=—[dt
dt 2U dt 2U

> [ dA =ﬁf§dt

Where 7 Is the time period of revaluation.

l
>A=—T1
2p

Since the area of the ellipse is

(4.11.13)

(4.11.14)

A = mab




4.11 Keppler’s Laws

And b = aVv1l — e?
= A = ma*V1 — e?

And we also know that by usingr, = a = — %

2E12
uk?

= E = —% putting this in e = \/1 +

1--L
= e = _—
uka
12 12

sef=1-—=—=1-¢°
uka uka

=1 — e?

l

Juka

Therefore, A = ma?V1 — e? = ma?

=

l

Juka

(4.11.15)

(4.11.16)




4.11 Keppler’s Laws

= A= %aB/Z (4.11.17)

Comparing Equation for A

= 72 = (Constant)a’
= 72 o a3 as desired. (4.11.18)




4.12 Virial Theorem

The virial theorem provides a general equation that relates the average over time of
the total Kinetic Energy (T) of a system, bound by potential forces,

N
<T>=—%<ZF,--1~,->
i=1
The word virial for the right-hand side of the equation derives from vis, the Latin
word for "force" or "energy" and was given its technical definition by Rudolf Clausius
in 1870.

significance : virial theorem is that it allows the average total kinetic energy to be
calculated even for very complicated systems that defy an exact solution,

such as those considered in Statistical mechanics; this average total kinetic energy Is
related to the Temperature of the system by the equipartition theorem. H @



4.12 Virial Theorem

Let us consider a system of points masses. Let the particle with mass “m;”, position
vector “r;” and momentum “ P;”. We define a term “G” such that;

G=YN.P;,-1;
P Z 1P T¢+Z 1P rl

dG_ N N . .
E_ Qi=1 Fi -1 + Ximgmy vy - 1y

I Z 1F 1‘ +Zl 1ml7”l2

(4.12.1)

(4.12.2)

_ \V'N
I = Z-_lmiri o i

1dl  1d «p
== m;r;-T;

2 dt Zdtz =1"" %t T

1dI

E& [Zl lmlrl rl"'Zl 1m;r;- ri]
1dl _ 2

2dt Zl lmlrl ri

1dl _ 2

Ea Zl 1mlrl ri

1dlI

= Lis1PiTi =G

The time average over the time Interval Is obtained by integrating both sides of the

dGg
T—dt -

equation. -Jo 2

[G (r) = G(0)]

(4.12.3)

()



4.12 Virial Theorem

If the motion is periodic, all coordinates repeat itself after a certain time “z”

1 r7dG

=2 2dt =0 because G(t) = G(0)

If the motion is not periodic even, then for T > the% IG(t) —G(0)] >0

In both cases right hand side is zero. Comparing Eqg. (4.12.2) and (4.12.3)
1 rTdG

~Jy =-dt =<YN F;-r;>+2<T>=0

22<T>=—<YN F;,-r; >

1
S<T>= —- < XL Fi-ry >

=< T >= —% <¥N (=VV) -1 >

1 dv
=><T>——E<—E-r> (4124) @




4.12 Virial Theorem

Since V =~ and & = —%for central force r=-% & ¥_ kz for

T dr T T dr T
dv k k . . _ central attractive force
—.r=——-r=—=putting this value In Eq.
dr T T dv k k )
(4124) e r = 2 r = - putting

this value in Eq. (4.12.4

<To>=—-tc-Yps=_1ky 4. (4.12.4)

2 dr 2 T 1 A

| <T>=—-—-< ——.1r>=

5<T>=—-=<V > (4.12.5) 2 dr
It is true for every system having potential 2 r
V = krntl =><T>=—%<V>

n+1

=>< T >= T <V > (4126)




